Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
1st International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems, ICMACC 2022 ; : 167-173, 2022.
Article in English | Scopus | ID: covidwho-2325759

ABSTRACT

Lung segmentation is a process of detection and identification of lung cancer and pneumonia with the help of image processing techniques. Deep learning algorithms can be incorporated to build the computer-aided diagnosis (CAD) system for detecting or recognizing broad objects like acute respiratory distress syndrome (ARDS), Tuberculosis, Pneumonia, Lung cancer, Covid, and several other respiratory diseases. This paper presents pneumonia detection from lung segmentation using deep learning methods on chest radiography. Chest X-ray is the most useful technique among other existing techniques, due to its lesser cost. The main drawback of a chest x-ray is that it cannot detect all problems in the chest. Thus, implementing convolutional neural networks (CNN) to perform lung segmentation and to obtain correct results. The 'lost' regions of the lungs are reconstructed by an automatic segmentation method from raw images of chest X-ray. © 2022 IEEE.

2.
Data Science and Management ; 2023.
Article in English | ScienceDirect | ID: covidwho-2307132

ABSTRACT

The novel coronavirus disease, or COVID-19, is a hazardous disease. It is endangering the lives of many people living in more than two hundred countries. It directly affects the lungs. In general, two main imaging modalities: - computed tomography (CT) and chest x-ray (CXR) are used to achieve a speedy and reliable medical diagnosis. Identifying the coronavirus in medical images is exceedingly difficult for diagnosis, assessment, and treatment. It is demanding, time-consuming, and subject to human mistakes. In biological disciplines, excellent performance can be achieved by employing artificial intelligence (AI) models. As a subfield of AI, deep learning (DL) networks have drawn considerable attention than standard machine learning (ML) methods. DL models automatically carry out all the steps of feature extraction, feature selection, and classification. This study has performed comprehensive analysis of coronavirus classification using CXR and CT imaging modalities using DL architectures. Additionally, we have discussed how transfer learning is helpful in this regard. Finally, the problem of designing and implementing a system using computer-aided diagnostic (CAD) to find COVID-19 using DL approaches is highlighted a future research possibility.

3.
21st International Conference on Image Analysis and Processing, ICIAP 2022 ; 13231 LNCS:65-76, 2022.
Article in English | Scopus | ID: covidwho-1877763

ABSTRACT

In the recent COVID-19 outbreak, chest X-rays were the main tool for diagnosing and monitoring the pathology. To prevent further spread of this disease, special circuits had to be implemented in the healthcare services. For this reason, these chest X-rays were captured with portable X-ray devices that compensate its lower quality and limitations with more deployment flexibility. However, most of the proposed computer-aided diagnosis methodologies were designed to work with traditional fixed X-ray machines and their performance is diminished when faced with these portable images. Additionally, given that the equipment needed to properly treat the disease (such as for life support and monitoring of vital signs) most of these systems learnt to identify these artifacts in the images instead of real clinically-significant variables. In this work, we present the first methodology forced to extract features exclusively from the pulmonary region of interest that is specially designed to work with these difficult portable images. Additionally, we generate a class activation map so the methodology also provides explainability to the results returned to the clinician. To ensure the robustness of our proposal, we tested the methodology with chest radiographs from patients diagnosed with COVID-19, pathologies similar to COVID-19 (such as other types of viral pneumonias) and healthy patients in different combinations with three convolutional networks from the state of the art (for a total of 9 studied scenarios). The experimentation confirms that our proposal is able to separate COVID-19 cases, reaching a 94.7% ± 1.34% of accuracy. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

4.
BMC Med Res Methodol ; 22(1): 125, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1817183

ABSTRACT

BACKGROUND: The health crisis resulting from the global COVID-19 pandemic highlighted more than ever the need for rapid, reliable and safe methods of diagnosis and monitoring of respiratory diseases. To study pulmonary involvement in detail, one of the most common resources is the use of different lung imaging modalities (like chest radiography) to explore the possible affected areas. METHODS: The study of patient characteristics like sex and age in pathologies of this type is crucial for gaining knowledge of the disease and for avoiding biases due to the clear scarcity of data when developing representative systems. In this work, we performed an analysis of these factors in chest X-ray images to identify biases. Specifically, 11 imbalance scenarios were defined with female and male COVID-19 patients present in different proportions for the sex analysis, and 6 scenarios where only one specific age range was used for training for the age factor. In each study, 3 different approaches for automatic COVID-19 screening were used: Normal vs COVID-19, Pneumonia vs COVID-19 and Non-COVID-19 vs COVID-19. The study was validated using two public chest X-ray datasets, allowing a reliable analysis to support the clinical decision-making process. RESULTS: The results for the sex-related analysis indicate this factor slightly affects the system in the Normal VS COVID-19 and Pneumonia VS COVID-19 approaches, although the identified differences are not relevant enough to worsen considerably the system. Regarding the age-related analysis, this factor was observed to be influencing the system in a more consistent way than the sex factor, as it was present in all considered scenarios. However, this worsening does not represent a major factor, as it is not of great magnitude. CONCLUSIONS: Multiple studies have been conducted in other fields in order to determine if certain patient characteristics such as sex or age influenced these deep learning systems. However, to the best of our knowledge, this study has not been done for COVID-19 despite the urgency and lack of COVID-19 chest x-ray images. The presented results evidenced that the proposed methodology and tested approaches allow a robust and reliable analysis to support the clinical decision-making process in this pandemic scenario.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , COVID-19/diagnostic imaging , Female , Humans , Male , Pandemics , Radiography , X-Rays
5.
Comput Electr Eng ; 101: 108055, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1814286

ABSTRACT

As people all over the world are vulnerable to be affected by the COVID-19 virus, the automatic detection of such a virus is an important concern. The paper aims to detect and classify corona virus using machine learning. To spot and identify corona virus in CT-Lung screening and Computer-Aided diagnosis (CAD) system is projected to distinguish and classifies the COVID-19. By utilizing the clinical specimens obtained from the corona-infected patients with the help of some machine learning techniques like Decision Tree, Support Vector Machine, K-means clustering, and Radial Basis Function. While some specialists believe that the RT-PCR test is the best option for diagnosing Covid-19 patients, others believe that CT scans of the lungs can be more accurate in diagnosing corona virus infection, as well as being less expensive than the PCR test. The clinical specimens include serum specimens, respiratory secretions, and whole blood specimens. Overall, 15 factors are measured from these specimens as the result of the previous clinical examinations. The proposed CAD system consists of four phases starting with the CT lungs screening collection, followed by a pre-processing stage to enhance the appearance of the ground glass opacities (GGOs) nodules as they originally lock hazy with fainting contrast. A modified K-means algorithm will be used to detect and segment these regions. Finally, the use of detected, infected areas that obtained in the detection phase with a scale of 50×50 and perform segmentation of the solid false positives that seem to be GGOs as inputs and targets for the machine learning classifiers, here a support vector machine (SVM) and Radial basis function (RBF) has been utilized. Moreover, a GUI application is developed which avoids the confusion of the doctors for getting the exact results by giving the 15 input factors obtained from the clinical specimens.

6.
Optik (Stuttg) ; 241: 167199, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1233455

ABSTRACT

Todays, COVID-19 has caused much death and its spreading speed is increasing, regarding virus mutation. This outbreak warns diagnosing infected people is an important issue. So, in this research, a computer-aided diagnosis (CAD) system called COV-CAD is proposed for diagnosing COVID-19 disease. This COV-CAD system is created by a feature extractor, a classification method, and a content-based imaged retrieval (CBIR) system. The proposed feature extractor is created by using the modified AlexNet CNN. The first modification changes ReLU activation functions to LeakyReLU for increasing efficiency. The second change is converting a fully connected (FC) layer of AlexNet CNN with a new FC, which results in reducing learnable parameters and training time. Another FC layer with dimensions 1 × 64 is added at the end of the feature extractor as the feature vector. In the classification section, a new classification method is defined in which the majority voting technique is applied on outputs of CBIR, SVM, KNN, and Random Forest for final diagnosing. Furthermore, in retrieval section, the proposed method uses CBIR because of its ability to retrieve the most similar images to the image of a patient. Since this feature helps physicians to find the most similar cases, they could conduct further statistical evaluations on profiles of similar patients. The system has been evaluated by accuracy, sensitivity, specificity, F1-score, and mean average precision and its accuracy for CT and X-ray datasets is 93.20% and 99.38%, respectively. The results demonstrate that the proposed method is more efficient than other similar studies.

7.
Front Med (Lausanne) ; 8: 643917, 2021.
Article in English | MEDLINE | ID: covidwho-1178002

ABSTRACT

Objectives: Visual chest CT is subjective with interobserver variability. We aimed to quantify the dynamic changes of lung and pneumonia on three-dimensional CT (3D-CT) images in coronavirus disease 2019 (COVID-19) patients during hospitalization. Methods: A total of 110 laboratory-confirmed COVID-19 patients who underwent chest CT from January 3 to February 29, 2020 were retrospectively reviewed. Pneumonia lesions were classified as four stages: early, progressive, peak, and absorption stages on chest CT. A computer-aided diagnostic (CAD) system calculated the total lung volume (TLV), the percentage of low attenuation areas (LAA%), the volume of pneumonia, the volume of ground-glass opacities (GGO), the volume of consolidation plus the GGO/consolidation ratio. The CT score was visually assessed by radiologists. Comparisons of lung and pneumonia parameters among the four stages were performed by one-way ANOVA with post-hoc tests. The relationship between the CT score and the volume of pneumonia, and between LAA% and the volume of pneumonia in four stages was assessed by Spearman's rank correlation analysis. Results: A total of 534 chest CT scans were performed with a median interval of 4 days. TLV, LAA%, and the GGO/consolidation ratio were significantly decreased, while the volume of pneumonia, GGO, and consolidation were significantly increased in the progressive and peak stages (for all, P < 0.05). The CT score was significantly correlated with the pneumonia volume in the four stages (r = 0.731, 0.761, 0.715, and 0.669, respectively, P < 0.001). Conclusion: 3D-CT could be used as a useful quantification method in monitoring the dynamic changes of COVID-19 pneumonia.

8.
Expert Syst Appl ; 173: 114677, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1093042

ABSTRACT

One of the main challenges in times of sanitary emergency is to quickly develop computer aided diagnosis systems with a limited number of available samples due to the novelty, complexity of the case and the urgency of its implementation. This is the case during the current pandemic of COVID-19. This pathogen primarily infects the respiratory system of the afflicted, resulting in pneumonia and in a severe case of acute respiratory distress syndrome. This results in the formation of different pathological structures in the lungs that can be detected by the use of chest X-rays. Due to the overload of the health services, portable X-ray devices are recommended during the pandemic, preventing the spread of the disease. However, these devices entail different complications (such as capture quality) that, together with the subjectivity of the clinician, make the diagnostic process more difficult and suggest the necessity for computer-aided diagnosis methodologies despite the scarcity of samples available to do so. To solve this problem, we propose a methodology that allows to adapt the knowledge from a well-known domain with a high number of samples to a new domain with a significantly reduced number and greater complexity. We took advantage of a pre-trained segmentation model from brain magnetic resonance imaging of a unrelated pathology and performed two stages of knowledge transfer to obtain a robust system able to segment lung regions from portable X-ray devices despite the scarcity of samples and lesser quality. This way, our methodology obtained a satisfactory accuracy of 0.9761 ± 0.0100 for patients with COVID-19, 0.9801 ± 0.0104 for normal patients and 0.9769 ± 0.0111 for patients with pulmonary diseases with similar characteristics as COVID-19 (such as pneumonia) but not genuine COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL